Vertex operator algebras and the representation theory of toroidal algebras

نویسندگان

  • Stephen Berman
  • Yuly Billig
  • Jacek Szmigielski
چکیده

An explicit vertex operator algebra construction is given of a class of irreducible modules for toroidal Lie algebras. AMS (MOS) Subject Classifications:17B69, 17B68, 17B66, 17B10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Vertex Operator Representations For Toroidal Lie Algebras

Vertex operators discovered by physicists in string theory have turned out to be important objects in mathematics. One can use vertex operators to construct various realizations of the irreducible highest weight representations for affine Kac-Moody algebras. Two of these, the principal and homogeneous realizations, are of particular interest. The principal vertex operator construction for the a...

متن کامل

ct 2 00 9 Representations of toroidal extended affine Lie algebras

We show that the representation theory for the toroidal extended affine Lie algebra is controlled by a VOA which is a tensor product of four VOAs: a sub-VOA V + Hyp of a hyperbolic lattice VOA, affine ˙ g and sl N VOAs and a Virasoro VOA. A tensor product of irre-ducible modules for these VOAs admits the structure of an irreducible module for the toroidal extended affine Lie algebra. We also sh...

متن کامل

ar X iv : m at h / 02 01 31 3 v 1 [ m at h . R T ] 3 1 Ja n 20 02 To Robert Moody Energy - momentum tensor for the toroidal

Energy-momentum tensor for the toroidal Lie algebras. Abstract. We construct vertex operator representations for the full (N + 1)-toroidal Lie algebra g. We associate with g a toroidal vertex operator algebra, which is a tensor product of an affine VOA, a sub-VOA of a hyperbolic lattice VOA, affine sl N VOA and a twisted Heisenberg-Virasoro VOA. The modules for the toroidal VOA are also modules...

متن کامل

ar X iv : q - a lg / 9 50 40 17 v 1 2 4 A pr 1 99 5 Introduction to vertex operator algebras I

The theory of vertex (operator) algebras has developed rapidly in the last few years. These rich algebraic structures provide the proper formulation for the moonshine module construction for the Monster group ([B1-B2], [FLM1], [FLM3]) and also give a lot of new insight into the representation theory of the Virasoro algebra and affine Kac-Moody algebras (see for instance [DL3], [DMZ], [FZ], [W])...

متن کامل

A category of modules for the full toroidal Lie algebra . Yuly Billig

Toroidal Lie algebras are very natural multi-variable generalizations of affine Kac-Moody algebras. The theory of affine Lie algebras is rich and beautiful, having connections with diverse areas of mathematics and physics. Toroidal Lie algebras are also proving themselves to be useful for the applications. Frenkel, Jing and Wang [FJW] used representations of toroidal Lie algebras to construct a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002